\(\int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{a+b \cos (c+d x)} \, dx\) [796]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [F(-2)]
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 32, antiderivative size = 89 \[ \int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{a+b \cos (c+d x)} \, dx=\frac {(b B-a C) x}{b^2}-\frac {2 a (b B-a C) \arctan \left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{\sqrt {a-b} b^2 \sqrt {a+b} d}+\frac {C \sin (c+d x)}{b d} \]

[Out]

(B*b-C*a)*x/b^2+C*sin(d*x+c)/b/d-2*a*(B*b-C*a)*arctan((a-b)^(1/2)*tan(1/2*d*x+1/2*c)/(a+b)^(1/2))/b^2/d/(a-b)^
(1/2)/(a+b)^(1/2)

Rubi [A] (verified)

Time = 0.15 (sec) , antiderivative size = 89, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.156, Rules used = {3102, 12, 2814, 2738, 211} \[ \int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{a+b \cos (c+d x)} \, dx=-\frac {2 a (b B-a C) \arctan \left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{b^2 d \sqrt {a-b} \sqrt {a+b}}+\frac {x (b B-a C)}{b^2}+\frac {C \sin (c+d x)}{b d} \]

[In]

Int[(B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(a + b*Cos[c + d*x]),x]

[Out]

((b*B - a*C)*x)/b^2 - (2*a*(b*B - a*C)*ArcTan[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/(Sqrt[a - b]*b^2*Sq
rt[a + b]*d) + (C*Sin[c + d*x])/(b*d)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 2738

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[2*(e/d), Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 2814

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[b*(x/d)
, x] - Dist[(b*c - a*d)/d, Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d
, 0]

Rule 3102

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Dist[1/(
b*(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x],
x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {C \sin (c+d x)}{b d}+\frac {\int \frac {(b B-a C) \cos (c+d x)}{a+b \cos (c+d x)} \, dx}{b} \\ & = \frac {C \sin (c+d x)}{b d}+\frac {(b B-a C) \int \frac {\cos (c+d x)}{a+b \cos (c+d x)} \, dx}{b} \\ & = \frac {(b B-a C) x}{b^2}+\frac {C \sin (c+d x)}{b d}-\frac {(a (b B-a C)) \int \frac {1}{a+b \cos (c+d x)} \, dx}{b^2} \\ & = \frac {(b B-a C) x}{b^2}+\frac {C \sin (c+d x)}{b d}-\frac {(2 a (b B-a C)) \text {Subst}\left (\int \frac {1}{a+b+(a-b) x^2} \, dx,x,\tan \left (\frac {1}{2} (c+d x)\right )\right )}{b^2 d} \\ & = \frac {(b B-a C) x}{b^2}-\frac {2 a (b B-a C) \arctan \left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{\sqrt {a-b} b^2 \sqrt {a+b} d}+\frac {C \sin (c+d x)}{b d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.75 (sec) , antiderivative size = 85, normalized size of antiderivative = 0.96 \[ \int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{a+b \cos (c+d x)} \, dx=\frac {(b B-a C) (c+d x)-\frac {2 a (-b B+a C) \text {arctanh}\left (\frac {(a-b) \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {-a^2+b^2}}\right )}{\sqrt {-a^2+b^2}}+b C \sin (c+d x)}{b^2 d} \]

[In]

Integrate[(B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(a + b*Cos[c + d*x]),x]

[Out]

((b*B - a*C)*(c + d*x) - (2*a*(-(b*B) + a*C)*ArcTanh[((a - b)*Tan[(c + d*x)/2])/Sqrt[-a^2 + b^2]])/Sqrt[-a^2 +
 b^2] + b*C*Sin[c + d*x])/(b^2*d)

Maple [A] (verified)

Time = 0.70 (sec) , antiderivative size = 110, normalized size of antiderivative = 1.24

method result size
derivativedivides \(\frac {-\frac {2 a \left (B b -a C \right ) \arctan \left (\frac {\left (a -b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{b^{2} \sqrt {\left (a -b \right ) \left (a +b \right )}}+\frac {\frac {2 C b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}+2 \left (B b -a C \right ) \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{b^{2}}}{d}\) \(110\)
default \(\frac {-\frac {2 a \left (B b -a C \right ) \arctan \left (\frac {\left (a -b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{b^{2} \sqrt {\left (a -b \right ) \left (a +b \right )}}+\frac {\frac {2 C b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}+2 \left (B b -a C \right ) \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{b^{2}}}{d}\) \(110\)
risch \(\frac {B x}{b}-\frac {a C x}{b^{2}}-\frac {i {\mathrm e}^{i \left (d x +c \right )} C}{2 b d}+\frac {i {\mathrm e}^{-i \left (d x +c \right )} C}{2 b d}-\frac {a \ln \left ({\mathrm e}^{i \left (d x +c \right )}-\frac {i a^{2}-i b^{2}-a \sqrt {-a^{2}+b^{2}}}{b \sqrt {-a^{2}+b^{2}}}\right ) B}{\sqrt {-a^{2}+b^{2}}\, d b}+\frac {a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-\frac {i a^{2}-i b^{2}-a \sqrt {-a^{2}+b^{2}}}{b \sqrt {-a^{2}+b^{2}}}\right ) C}{\sqrt {-a^{2}+b^{2}}\, d \,b^{2}}+\frac {a B \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a^{2}-i b^{2}+a \sqrt {-a^{2}+b^{2}}}{b \sqrt {-a^{2}+b^{2}}}\right )}{\sqrt {-a^{2}+b^{2}}\, d b}-\frac {a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a^{2}-i b^{2}+a \sqrt {-a^{2}+b^{2}}}{b \sqrt {-a^{2}+b^{2}}}\right ) C}{\sqrt {-a^{2}+b^{2}}\, d \,b^{2}}\) \(352\)

[In]

int((B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+cos(d*x+c)*b),x,method=_RETURNVERBOSE)

[Out]

1/d*(-2*a*(B*b-C*a)/b^2/((a-b)*(a+b))^(1/2)*arctan((a-b)*tan(1/2*d*x+1/2*c)/((a-b)*(a+b))^(1/2))+2/b^2*(C*b*ta
n(1/2*d*x+1/2*c)/(1+tan(1/2*d*x+1/2*c)^2)+(B*b-C*a)*arctan(tan(1/2*d*x+1/2*c))))

Fricas [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 322, normalized size of antiderivative = 3.62 \[ \int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{a+b \cos (c+d x)} \, dx=\left [-\frac {2 \, {\left (C a^{3} - B a^{2} b - C a b^{2} + B b^{3}\right )} d x - {\left (C a^{2} - B a b\right )} \sqrt {-a^{2} + b^{2}} \log \left (\frac {2 \, a b \cos \left (d x + c\right ) + {\left (2 \, a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt {-a^{2} + b^{2}} {\left (a \cos \left (d x + c\right ) + b\right )} \sin \left (d x + c\right ) - a^{2} + 2 \, b^{2}}{b^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + a^{2}}\right ) - 2 \, {\left (C a^{2} b - C b^{3}\right )} \sin \left (d x + c\right )}{2 \, {\left (a^{2} b^{2} - b^{4}\right )} d}, -\frac {{\left (C a^{3} - B a^{2} b - C a b^{2} + B b^{3}\right )} d x - {\left (C a^{2} - B a b\right )} \sqrt {a^{2} - b^{2}} \arctan \left (-\frac {a \cos \left (d x + c\right ) + b}{\sqrt {a^{2} - b^{2}} \sin \left (d x + c\right )}\right ) - {\left (C a^{2} b - C b^{3}\right )} \sin \left (d x + c\right )}{{\left (a^{2} b^{2} - b^{4}\right )} d}\right ] \]

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+b*cos(d*x+c)),x, algorithm="fricas")

[Out]

[-1/2*(2*(C*a^3 - B*a^2*b - C*a*b^2 + B*b^3)*d*x - (C*a^2 - B*a*b)*sqrt(-a^2 + b^2)*log((2*a*b*cos(d*x + c) +
(2*a^2 - b^2)*cos(d*x + c)^2 - 2*sqrt(-a^2 + b^2)*(a*cos(d*x + c) + b)*sin(d*x + c) - a^2 + 2*b^2)/(b^2*cos(d*
x + c)^2 + 2*a*b*cos(d*x + c) + a^2)) - 2*(C*a^2*b - C*b^3)*sin(d*x + c))/((a^2*b^2 - b^4)*d), -((C*a^3 - B*a^
2*b - C*a*b^2 + B*b^3)*d*x - (C*a^2 - B*a*b)*sqrt(a^2 - b^2)*arctan(-(a*cos(d*x + c) + b)/(sqrt(a^2 - b^2)*sin
(d*x + c))) - (C*a^2*b - C*b^3)*sin(d*x + c))/((a^2*b^2 - b^4)*d)]

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 3235 vs. \(2 (76) = 152\).

Time = 164.77 (sec) , antiderivative size = 3235, normalized size of antiderivative = 36.35 \[ \int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{a+b \cos (c+d x)} \, dx=\text {Too large to display} \]

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)**2)/(a+b*cos(d*x+c)),x)

[Out]

Piecewise((zoo*x*(B*cos(c) + C*cos(c)**2)/cos(c), Eq(a, 0) & Eq(b, 0) & Eq(d, 0)), (B*d*x*tan(c/2 + d*x/2)**2/
(b*d*tan(c/2 + d*x/2)**2 + b*d) + B*d*x/(b*d*tan(c/2 + d*x/2)**2 + b*d) - B*tan(c/2 + d*x/2)**3/(b*d*tan(c/2 +
 d*x/2)**2 + b*d) - B*tan(c/2 + d*x/2)/(b*d*tan(c/2 + d*x/2)**2 + b*d) - C*d*x*tan(c/2 + d*x/2)**2/(b*d*tan(c/
2 + d*x/2)**2 + b*d) - C*d*x/(b*d*tan(c/2 + d*x/2)**2 + b*d) + C*tan(c/2 + d*x/2)**3/(b*d*tan(c/2 + d*x/2)**2
+ b*d) + 3*C*tan(c/2 + d*x/2)/(b*d*tan(c/2 + d*x/2)**2 + b*d), Eq(a, b)), (B*d*x*tan(c/2 + d*x/2)**3/(b*d*tan(
c/2 + d*x/2)**3 + b*d*tan(c/2 + d*x/2)) + B*d*x*tan(c/2 + d*x/2)/(b*d*tan(c/2 + d*x/2)**3 + b*d*tan(c/2 + d*x/
2)) + B*tan(c/2 + d*x/2)**2/(b*d*tan(c/2 + d*x/2)**3 + b*d*tan(c/2 + d*x/2)) + B/(b*d*tan(c/2 + d*x/2)**3 + b*
d*tan(c/2 + d*x/2)) + C*d*x*tan(c/2 + d*x/2)**3/(b*d*tan(c/2 + d*x/2)**3 + b*d*tan(c/2 + d*x/2)) + C*d*x*tan(c
/2 + d*x/2)/(b*d*tan(c/2 + d*x/2)**3 + b*d*tan(c/2 + d*x/2)) + 3*C*tan(c/2 + d*x/2)**2/(b*d*tan(c/2 + d*x/2)**
3 + b*d*tan(c/2 + d*x/2)) + C/(b*d*tan(c/2 + d*x/2)**3 + b*d*tan(c/2 + d*x/2)), Eq(a, -b)), ((B*sin(c + d*x)/d
 + C*x*sin(c + d*x)**2/2 + C*x*cos(c + d*x)**2/2 + C*sin(c + d*x)*cos(c + d*x)/(2*d))/a, Eq(b, 0)), (x*(B*cos(
c) + C*cos(c)**2)/(a + b*cos(c)), Eq(d, 0)), (B*a*b*d*x*sqrt(-a/(a - b) - b/(a - b))*tan(c/2 + d*x/2)**2/(a*b*
*2*d*sqrt(-a/(a - b) - b/(a - b))*tan(c/2 + d*x/2)**2 + a*b**2*d*sqrt(-a/(a - b) - b/(a - b)) - b**3*d*sqrt(-a
/(a - b) - b/(a - b))*tan(c/2 + d*x/2)**2 - b**3*d*sqrt(-a/(a - b) - b/(a - b))) + B*a*b*d*x*sqrt(-a/(a - b) -
 b/(a - b))/(a*b**2*d*sqrt(-a/(a - b) - b/(a - b))*tan(c/2 + d*x/2)**2 + a*b**2*d*sqrt(-a/(a - b) - b/(a - b))
 - b**3*d*sqrt(-a/(a - b) - b/(a - b))*tan(c/2 + d*x/2)**2 - b**3*d*sqrt(-a/(a - b) - b/(a - b))) - B*a*b*log(
-sqrt(-a/(a - b) - b/(a - b)) + tan(c/2 + d*x/2))*tan(c/2 + d*x/2)**2/(a*b**2*d*sqrt(-a/(a - b) - b/(a - b))*t
an(c/2 + d*x/2)**2 + a*b**2*d*sqrt(-a/(a - b) - b/(a - b)) - b**3*d*sqrt(-a/(a - b) - b/(a - b))*tan(c/2 + d*x
/2)**2 - b**3*d*sqrt(-a/(a - b) - b/(a - b))) - B*a*b*log(-sqrt(-a/(a - b) - b/(a - b)) + tan(c/2 + d*x/2))/(a
*b**2*d*sqrt(-a/(a - b) - b/(a - b))*tan(c/2 + d*x/2)**2 + a*b**2*d*sqrt(-a/(a - b) - b/(a - b)) - b**3*d*sqrt
(-a/(a - b) - b/(a - b))*tan(c/2 + d*x/2)**2 - b**3*d*sqrt(-a/(a - b) - b/(a - b))) + B*a*b*log(sqrt(-a/(a - b
) - b/(a - b)) + tan(c/2 + d*x/2))*tan(c/2 + d*x/2)**2/(a*b**2*d*sqrt(-a/(a - b) - b/(a - b))*tan(c/2 + d*x/2)
**2 + a*b**2*d*sqrt(-a/(a - b) - b/(a - b)) - b**3*d*sqrt(-a/(a - b) - b/(a - b))*tan(c/2 + d*x/2)**2 - b**3*d
*sqrt(-a/(a - b) - b/(a - b))) + B*a*b*log(sqrt(-a/(a - b) - b/(a - b)) + tan(c/2 + d*x/2))/(a*b**2*d*sqrt(-a/
(a - b) - b/(a - b))*tan(c/2 + d*x/2)**2 + a*b**2*d*sqrt(-a/(a - b) - b/(a - b)) - b**3*d*sqrt(-a/(a - b) - b/
(a - b))*tan(c/2 + d*x/2)**2 - b**3*d*sqrt(-a/(a - b) - b/(a - b))) - B*b**2*d*x*sqrt(-a/(a - b) - b/(a - b))*
tan(c/2 + d*x/2)**2/(a*b**2*d*sqrt(-a/(a - b) - b/(a - b))*tan(c/2 + d*x/2)**2 + a*b**2*d*sqrt(-a/(a - b) - b/
(a - b)) - b**3*d*sqrt(-a/(a - b) - b/(a - b))*tan(c/2 + d*x/2)**2 - b**3*d*sqrt(-a/(a - b) - b/(a - b))) - B*
b**2*d*x*sqrt(-a/(a - b) - b/(a - b))/(a*b**2*d*sqrt(-a/(a - b) - b/(a - b))*tan(c/2 + d*x/2)**2 + a*b**2*d*sq
rt(-a/(a - b) - b/(a - b)) - b**3*d*sqrt(-a/(a - b) - b/(a - b))*tan(c/2 + d*x/2)**2 - b**3*d*sqrt(-a/(a - b)
- b/(a - b))) - C*a**2*d*x*sqrt(-a/(a - b) - b/(a - b))*tan(c/2 + d*x/2)**2/(a*b**2*d*sqrt(-a/(a - b) - b/(a -
 b))*tan(c/2 + d*x/2)**2 + a*b**2*d*sqrt(-a/(a - b) - b/(a - b)) - b**3*d*sqrt(-a/(a - b) - b/(a - b))*tan(c/2
 + d*x/2)**2 - b**3*d*sqrt(-a/(a - b) - b/(a - b))) - C*a**2*d*x*sqrt(-a/(a - b) - b/(a - b))/(a*b**2*d*sqrt(-
a/(a - b) - b/(a - b))*tan(c/2 + d*x/2)**2 + a*b**2*d*sqrt(-a/(a - b) - b/(a - b)) - b**3*d*sqrt(-a/(a - b) -
b/(a - b))*tan(c/2 + d*x/2)**2 - b**3*d*sqrt(-a/(a - b) - b/(a - b))) + C*a**2*log(-sqrt(-a/(a - b) - b/(a - b
)) + tan(c/2 + d*x/2))*tan(c/2 + d*x/2)**2/(a*b**2*d*sqrt(-a/(a - b) - b/(a - b))*tan(c/2 + d*x/2)**2 + a*b**2
*d*sqrt(-a/(a - b) - b/(a - b)) - b**3*d*sqrt(-a/(a - b) - b/(a - b))*tan(c/2 + d*x/2)**2 - b**3*d*sqrt(-a/(a
- b) - b/(a - b))) + C*a**2*log(-sqrt(-a/(a - b) - b/(a - b)) + tan(c/2 + d*x/2))/(a*b**2*d*sqrt(-a/(a - b) -
b/(a - b))*tan(c/2 + d*x/2)**2 + a*b**2*d*sqrt(-a/(a - b) - b/(a - b)) - b**3*d*sqrt(-a/(a - b) - b/(a - b))*t
an(c/2 + d*x/2)**2 - b**3*d*sqrt(-a/(a - b) - b/(a - b))) - C*a**2*log(sqrt(-a/(a - b) - b/(a - b)) + tan(c/2
+ d*x/2))*tan(c/2 + d*x/2)**2/(a*b**2*d*sqrt(-a/(a - b) - b/(a - b))*tan(c/2 + d*x/2)**2 + a*b**2*d*sqrt(-a/(a
 - b) - b/(a - b)) - b**3*d*sqrt(-a/(a - b) - b/(a - b))*tan(c/2 + d*x/2)**2 - b**3*d*sqrt(-a/(a - b) - b/(a -
 b))) - C*a**2*log(sqrt(-a/(a - b) - b/(a - b)) + tan(c/2 + d*x/2))/(a*b**2*d*sqrt(-a/(a - b) - b/(a - b))*tan
(c/2 + d*x/2)**2 + a*b**2*d*sqrt(-a/(a - b) - b/(a - b)) - b**3*d*sqrt(-a/(a - b) - b/(a - b))*tan(c/2 + d*x/2
)**2 - b**3*d*sqrt(-a/(a - b) - b/(a - b))) + C*a*b*d*x*sqrt(-a/(a - b) - b/(a - b))*tan(c/2 + d*x/2)**2/(a*b*
*2*d*sqrt(-a/(a - b) - b/(a - b))*tan(c/2 + d*x/2)**2 + a*b**2*d*sqrt(-a/(a - b) - b/(a - b)) - b**3*d*sqrt(-a
/(a - b) - b/(a - b))*tan(c/2 + d*x/2)**2 - b**3*d*sqrt(-a/(a - b) - b/(a - b))) + C*a*b*d*x*sqrt(-a/(a - b) -
 b/(a - b))/(a*b**2*d*sqrt(-a/(a - b) - b/(a - b))*tan(c/2 + d*x/2)**2 + a*b**2*d*sqrt(-a/(a - b) - b/(a - b))
 - b**3*d*sqrt(-a/(a - b) - b/(a - b))*tan(c/2 + d*x/2)**2 - b**3*d*sqrt(-a/(a - b) - b/(a - b))) + 2*C*a*b*sq
rt(-a/(a - b) - b/(a - b))*tan(c/2 + d*x/2)/(a*b**2*d*sqrt(-a/(a - b) - b/(a - b))*tan(c/2 + d*x/2)**2 + a*b**
2*d*sqrt(-a/(a - b) - b/(a - b)) - b**3*d*sqrt(-a/(a - b) - b/(a - b))*tan(c/2 + d*x/2)**2 - b**3*d*sqrt(-a/(a
 - b) - b/(a - b))) - 2*C*b**2*sqrt(-a/(a - b) - b/(a - b))*tan(c/2 + d*x/2)/(a*b**2*d*sqrt(-a/(a - b) - b/(a
- b))*tan(c/2 + d*x/2)**2 + a*b**2*d*sqrt(-a/(a - b) - b/(a - b)) - b**3*d*sqrt(-a/(a - b) - b/(a - b))*tan(c/
2 + d*x/2)**2 - b**3*d*sqrt(-a/(a - b) - b/(a - b))), True))

Maxima [F(-2)]

Exception generated. \[ \int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{a+b \cos (c+d x)} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+b*cos(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*b^2-4*a^2>0)', see `assume?`
 for more de

Giac [A] (verification not implemented)

none

Time = 0.35 (sec) , antiderivative size = 142, normalized size of antiderivative = 1.60 \[ \int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{a+b \cos (c+d x)} \, dx=-\frac {\frac {{\left (C a - B b\right )} {\left (d x + c\right )}}{b^{2}} - \frac {2 \, C \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right )} b} + \frac {2 \, {\left (C a^{2} - B a b\right )} {\left (\pi \left \lfloor \frac {d x + c}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (-2 \, a + 2 \, b\right ) + \arctan \left (-\frac {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\sqrt {a^{2} - b^{2}}}\right )\right )}}{\sqrt {a^{2} - b^{2}} b^{2}}}{d} \]

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+b*cos(d*x+c)),x, algorithm="giac")

[Out]

-((C*a - B*b)*(d*x + c)/b^2 - 2*C*tan(1/2*d*x + 1/2*c)/((tan(1/2*d*x + 1/2*c)^2 + 1)*b) + 2*(C*a^2 - B*a*b)*(p
i*floor(1/2*(d*x + c)/pi + 1/2)*sgn(-2*a + 2*b) + arctan(-(a*tan(1/2*d*x + 1/2*c) - b*tan(1/2*d*x + 1/2*c))/sq
rt(a^2 - b^2)))/(sqrt(a^2 - b^2)*b^2))/d

Mupad [B] (verification not implemented)

Time = 2.48 (sec) , antiderivative size = 541, normalized size of antiderivative = 6.08 \[ \int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{a+b \cos (c+d x)} \, dx=\frac {2\,C\,a\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d\,\left (a^2-b^2\right )}-\frac {2\,B\,b\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d\,\left (a^2-b^2\right )}-\frac {C\,b\,\sin \left (c+d\,x\right )}{d\,\left (a^2-b^2\right )}+\frac {2\,B\,a^2\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{b\,d\,\left (a^2-b^2\right )}-\frac {2\,C\,a^3\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{b^2\,d\,\left (a^2-b^2\right )}+\frac {B\,a\,\ln \left (\frac {a\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )-b\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )+\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{b\,d\,\sqrt {b^2-a^2}}-\frac {B\,a\,\ln \left (\frac {b\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )-a\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )+\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{b\,d\,\sqrt {b^2-a^2}}-\frac {C\,a^2\,\ln \left (\frac {a\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )-b\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )+\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{b^2\,d\,\sqrt {b^2-a^2}}+\frac {C\,a^2\,\ln \left (\frac {b\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )-a\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )+\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{b^2\,d\,\sqrt {b^2-a^2}}+\frac {C\,a^2\,\sin \left (c+d\,x\right )}{b\,d\,\left (a^2-b^2\right )} \]

[In]

int((B*cos(c + d*x) + C*cos(c + d*x)^2)/(a + b*cos(c + d*x)),x)

[Out]

(2*C*a*atan(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/(d*(a^2 - b^2)) - (2*B*b*atan(sin(c/2 + (d*x)/2)/cos(c/2 +
 (d*x)/2)))/(d*(a^2 - b^2)) - (C*b*sin(c + d*x))/(d*(a^2 - b^2)) + (2*B*a^2*atan(sin(c/2 + (d*x)/2)/cos(c/2 +
(d*x)/2)))/(b*d*(a^2 - b^2)) - (2*C*a^3*atan(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/(b^2*d*(a^2 - b^2)) + (B*
a*log((a*sin(c/2 + (d*x)/2) - b*sin(c/2 + (d*x)/2) + cos(c/2 + (d*x)/2)*(b^2 - a^2)^(1/2))/cos(c/2 + (d*x)/2))
)/(b*d*(b^2 - a^2)^(1/2)) - (B*a*log((b*sin(c/2 + (d*x)/2) - a*sin(c/2 + (d*x)/2) + cos(c/2 + (d*x)/2)*(b^2 -
a^2)^(1/2))/cos(c/2 + (d*x)/2)))/(b*d*(b^2 - a^2)^(1/2)) - (C*a^2*log((a*sin(c/2 + (d*x)/2) - b*sin(c/2 + (d*x
)/2) + cos(c/2 + (d*x)/2)*(b^2 - a^2)^(1/2))/cos(c/2 + (d*x)/2)))/(b^2*d*(b^2 - a^2)^(1/2)) + (C*a^2*log((b*si
n(c/2 + (d*x)/2) - a*sin(c/2 + (d*x)/2) + cos(c/2 + (d*x)/2)*(b^2 - a^2)^(1/2))/cos(c/2 + (d*x)/2)))/(b^2*d*(b
^2 - a^2)^(1/2)) + (C*a^2*sin(c + d*x))/(b*d*(a^2 - b^2))